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Abstract
Adopting a purely group-theoretical point of view, we consider the star product
of functions which is associated, in a natural way, with a square integrable (in
general, projective) representation of a locally compact group. Next, we show
that for this (implicitly defined) star product, explicit formulas can be provided.
Two significant examples are studied in detail: the group of translations on
phase space and the one-dimensional affine group. The study of the first
example leads to the Groenewold–Moyal star product. In the second example,
the link with wavelet analysis is clarified.

PACS numbers: 03.65.Ca, 03.65.Ta, 03.65.Wj, 03.65.Fd, 02.20.Qs

1. Introduction

The concept of star product of functions is a remarkable achievement of theoretical physics.
The archetype—and still nowadays, the most important realization—of this concept is the
Groenewold–Moyal star product [1, 2] (see also the recent book [3] and references therein).
Although there is no unique general mathematical framework encompassing all known star
products, one can certainly single out a simple leading idea to which the various possible
definitions of star products are more or less inspired: to replace the ordinary pointwise
product of (C-valued) functions defined on a certain set (a ‘phase space’ endowed with some
structures: a differentiable manifold, a measure space, etc) with a suitable non-commutative,
associative product that mimics the typical non-commutative behavior of linear operators.

We will make no attempt at surveying the rich and varied literature on star products.
We will content ourselves with recalling that both algebraic–analytic [4–6] and differential–
geometric [7–10] approaches to the subject have been adopted, also in view of different
purposes and applications. It is also worth mentioning the fact that the most important topics
where the formalism of star products plays a relevant role are, probably, the construction of
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quantum mechanics ‘on phase space’ and the study of the classical limit of quantum mechanics
[3, 11, 12] (see also Kubo’s seminal paper [13]). Thus, one may regard Wigner [14] and Weyl
[15] as the fathers of this formalism.

More recently, a general approach to star products based on the idea of using suitable
‘quantizers’ and ‘dequantizers’ has been proposed and developed by various authors [16–22].
This approach is very close to applications in quantum mechanics since the star products of
functions that one obtains are, by construction, nothing but the ‘images’ of the products of
quantum-mechanical operators.

In our present contribution, we will adopt a purely group-theoretical point of view which
is conceptually similar to the ‘quantizer–dequantizer’ approach cited above. Indeed, rather
than trying to define a star product directly in a given space of functions (as usual, for instance,
in the differential-geometric approach), we consider the star product (implicitly) induced by a
suitable group-theoretical quantization–dequantization scheme. Clearly, at this point, the real
problem is to find explicit formulas for the implicitly defined star product.

Before illustrating the main points of our work, it is worth mentioning that recently
another group-theoretical approach to star products—in the context of a suitable quantization–
dequantization scheme—has been elaborated [23]. However, this approach, differently from
the approach adopted in the present paper, relies on the concept of ‘frame transform’ and it is
not directly related to the Groenewold–Moyal product.

Let us now briefly outline our method and our main results. First, we show that by means
of the quantization (Weyl) and dequantization (Wigner) maps generated by a square integrable
(in general, projective) representation U of a locally compact group G—see [23–25]—it is
possible to introduce, in a natural way, a star product in the Hilbert space L2(G) of square
integrable C-valued functions on G. The product of two functions is obtained by quantizing
them, by forming the product of the two operators thus obtained and, finally, by dequantizing
this product. Endowed with the operation just described, L2(G) becomes a H∗-algebra. We
will then prove—this is the main result of the paper—that the star product in L2(G) admits a
simple explicit formula. More precisely, we will show that with every orthonormal basis in
the Hilbert space of the representation U is associated a formula for the star product (however,
all these formulas share the same general form). This basic result can be generalized or
specialized in various ways. For instance, an expression of the ‘K̂-deformed star product’—
see [19, 20]—which is an interesting generalization of the star product, can also be obtained.
On the other hand, in the case where G is unimodular, a particularly simple formula for
the star product—a sort of ‘twisted convolution’ à la Grossmann–Loupias–Stein [4]—can be
derived.

We believe that the point of view on star products adopted in this paper is very close to the
‘original spirit’ of the Groenewold–Moyal star product since it solely relies on (generalized)
Wigner and Weyl maps. In fact, ‘our’ star product is essentially the Groenewold–Moyal star
product in the case where the group G is the group of translations on phase space, i.e. the two
products—the twisted convolution and the Groenewold–Moyal product—are related by the
symplectic Fourier transform.

We stress that our approach relies on the existence of a square integrable representation
U of the locally compact group G for defining an associated star product in L2(G). This
feature, however, should not be regarded as a limit of this approach. As is well known, when
dealing with mathematics nothing is free: the weaker the assumptions, the poorer will be the
results that one is able to prove. Moreover, our group-theoretical point of view is very natural
having in mind applications to physics. If G is regarded as a ‘symmetry group’ of a quantum
system and U as the symmetry action of this group in the Hilbert space H of the system, then
the associated star product in L2(G) is nothing but the realization in terms of functions of
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the product of quantum-mechanical operators (observables or states); moreover, it turns out
that the star product is ‘equivariant’ with respect to the natural action of the symmetry group.
Namely, the natural action of G on operators in H translates into (i.e. is intertwined by the
dequantization map with) a simple transformation of the corresponding functions in L2(G),
and the star product of two transformed functions coincides with the transformed product of
the two untransformed functions.

The paper is organized as follows. In section 2, we fix the main notations and we briefly
recall some mathematical notions; in particular, we review some basic facts concerning square
integrable representations. Next, in section 3, we define the dequantization (Wigner) and
quantization (Weyl) maps generated by a square integrable representation, and we derive the
relevant ‘intertwining properties’ of the Wigner map. On the basis of these definitions we
then introduce—see section 4—the notion of star product associated with a square integrable
representation, and we study its main properties. The star product introduced in such a way is,
however, only implicitly defined. As already mentioned, it is a remarkable fact that it admits
an explicit realization; furthermore, in the case of a unimodular group, a particularly simple
formula can be derived. These results—that form the core of our paper—are stated and proved
in section 5. In section 6, we consider two significant examples: the group of translations on
phase space—which is related to the standard Groenewold–Moyal star product—and the affine
group, which plays a central role in wavelet analysis. Finally, in section 7, a few conclusions
are drawn.

2. Some known facts and notations

In this section, we will recall some basic facts of the theory of representations of topological
groups; standard references on the subject are [26, 27]. We will also fix the main notations
that will be used in the following sections.

Let G be a locally compact, second countable, Hausdorff topological group (in short,
l.c.s.c. group). We will denote by μG and �G, respectively, a left Haar measure (of course
uniquely defined up to a multiplicative constant) and the modular function on G. The symbol
e will indicate the unit element in G.

For the scalar product 〈·, ·〉 in a separable complex Hilbert space H, we will always follow
the convention that it is linear in the second argument. The symbol U(H) will denote the
unitary group of H—i.e. the group of all unitary operators in H—which, endowed with the
strong operator topology, is a metrizable, second countable, Hausdorff topological group.

In the following, we will consider a weakly Borel1 projective representation U : G →
U(H) of a l.c.s.c. group G in a separable complex Hilbert space H—see [26], chapter VII—
with multiplier m:

U(e) = I, U(gh) = m(g, h)U(g)U(h), ∀ g, h ∈ G, (2.1)

where I is the identity operator in H. The multiplier m : G × G → T—with T denoting the
circle group, i.e. the group of complex numbers of modulus one—is a Borel function satisfying
the following conditions:

m(g, e) = m(e, g) = 1, ∀ g ∈ G, (2.2)

and

m(g1, g2g3) m(g2, g3) = m(g1g2, g3) m(g1, g2), ∀ g1, g2, g3 ∈ G. (2.3)

1 Namely, G � g 	→ 〈φ,U(g) ψ〉 ∈ C is a Borel function, for any pair of vectors φ, ψ ∈ H. Projective
representations (in particular, unitary representations) will always be implicitly assumed to be weakly Borel.
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It is, moreover, immediate to check that m(g, g−1) = m(g−1, g). Of course, in the case where
m ≡ 1, U is a standard unitary representation and, according to a well-known result, in this
case the hypothesis that U is a weakly Borel map implies that it is strongly continuous.

We can identify the unitary dual of G with any (suitably topologized) maximal set of
mutually unitarily inequivalent, irreducible (strongly continuous) unitary representations of
G. We will denote by Ǧ such a set, and we will call it a realization of the unitary dual of G.
Recall that, if G is compact, then Ǧ must be a finite or countable set. It is worth stressing that
we will regard as compact groups all the finite groups (endowed with the discrete topology).

Assume that the projective representation U : G → U(H) is irreducible. Given two
vectors ψ, φ ∈ H, we define the function (called ‘coefficient’ of the representation U)

cU
ψ,φ : G � g 	→ 〈U(g)ψ, φ〉 ∈ C, (2.4)

and we consider the set of ‘admissible vectors for U’, i.e. A(U) := {
ψ ∈ H |∃φ ∈ H : φ �=

0, cU
ψ,φ ∈ L2(G)

}
, where L2(G) ≡ L2(G,μG; C) (we will denote by 〈·, ·〉L2 and ‖·‖L2 the

scalar product and the norm in L2(G)). The representation U is said to be square integrable if
A(U) �= {0}. Square integrable projective representations are characterized by the following
result—see [28]—which is a generalization of a classical theorem of Duflo and Moore [29]
concerning unitary representations.

Theorem 2.1. Let the projective representation U : G → U(H) be square integrable.
Then, the set A(U) is a dense linear span in H, stable under the action of U, and, for any
pair of vectors φ ∈ H and ψ ∈ A(U), the coefficient cU

ψ,φ is square integrable with respect
to the left Haar measure μG on G. Moreover, there exists a unique positive self-adjoint,
injective linear operator D̂U in H—the ‘Duflo–Moore operator associated with U’—such that
A(U) = Dom(D̂U ) and the following ‘orthogonality relations’ hold:〈

cU
ψ1,φ1

, cU
ψ2,φ2

〉
L2 = 〈φ1, φ2〉 〈D̂U ψ2, D̂U ψ1〉, (2.5)

for all φ1, φ2 ∈ H and all ψ1, ψ2 ∈ A(U). The Duflo–Moore operator D̂U satisfies the relation

U(g) D̂U = �G(g)
1
2 D̂U U(g), ∀ g ∈ G; (2.6)

it is bounded if and only if G is unimodular (i.e. �G ≡ 1) and, in such case, it is a multiple of
the identity.

Remark 2.1. Let the representation U be square integrable. If the Haar measure μG

is rescaled by a positive constant, then the Duflo–Moore operator D̂U is rescaled by the
square root of this constant. Thus, we will say that D̂U is normalized according to μG.
On the other hand, if a normalization of the left Haar measure on G is not fixed, D̂U is
defined up to a positive factor and we will call a specific choice a normalization of the Duflo–
Moore operator. In particular, if G is unimodular, then D̂U = I is a normalization of the
Duflo–Moore operator, and the corresponding Haar measure will be said to be normalized in
agreement with U. Moreover, the operator D̂U , being injective and positive self-adjoint, has
a positive self-adjoint, densely defined inverse. As a consequence of (2.6), the dense linear
span Dom

(
D̂−1

U

) = Ran(D̂U )—like A(U) = Dom(D̂U )—is stable under the action of U and

U(g)−1D̂−1
U = �G(g)

1
2 D̂−1

U U(g)−1, ∀ g ∈ G. (2.7)

From this relation, using the fact that U(g)−1 = m(g, g−1) U(g−1), we obtain

U(g)D̂−1
U = �G(g)−

1
2 D̂−1

U U(g), ∀ g ∈ G. (2.8)

We finally note that, in the case where G is not unimodular, a square integrable
representation of G cannot be finite-dimensional (since the associated Duflo–Moore operator is
unbounded).
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Let us recall a few other facts about square integrable representations:

(1) If the representation U of G is square integrable, then the orthogonality relations (2.5)
imply that, for every nonzero admissible vector ψ ∈ A(U), one can define the linear
operator

W
ψ

U : H � φ 	→ ‖D̂U ψ‖−1 cU
ψ,φ ∈ L2(G) (2.9)

—sometimes called (generalized) wavelet transform generated by U, with analyzing
vector ψ—which is an isometry. The ordinary wavelet transform arises in the special
case where G is the one-dimensional affine group R � R+

∗ (see [30, 31]); we will clarify
this point in section 6. The isometry W

ψ

U intertwines the representation U with the left
regular m-representation Rm of G in L2(G), see [28], which is the projective representation
(with multiplier m) defined by

(Rm(g)f )(g′) := →
m (g, g′) f (g−1g′), g, g′ ∈ G, f ∈ L2(G), (2.10)

where
→
m (g, g′) := m(g, g−1)∗ m(g−1, g′), namely

W
ψ

U U(g) = Rm(g) W
ψ

U , ∀ g ∈ G. (2.11)

Hence, U is unitarily equivalent to a subrepresentation of Rm. Note that, for m ≡ 1,
R ≡ Rm is the standard left regular representation of G.

(2) Let the group G be compact (hence, unimodular), and let Ǧ be a realization of the unitary
dual of G. In this case, the irreducible unitary representations of G are finite-dimensional—
we will denote by δ(U) the dimension of the Hilbert space H ≡ H(U) of a representation
U ∈ Ǧ—and square integrable (since the Haar measure on G is finite and the coefficients
of these representations are a bounded functions). According to the Peter–Weyl theorem
[27, 32], the Hilbert space L2(G) admits the orthogonal sum decomposition

L2(G) =
⊕
U∈Ǧ

L2(G)[U ], (2.12)

where L2(G)[U ] is a finite-dimensional subspace of L2(G)—depending only on the unitary
equivalence class [U ] of the representation U—that is characterized as follows:

• for every orthonormal basis {χn}δ(U)
n=1 in the Hilbert space of the representation U ∈ Ǧ,

L2(G)[U ] =
δ(U)⊕
n=1

Ran
(
W

χn

U

); (2.13)

hence, dim(L2(G)[U ]) = δ(U)2;
• for every n ∈ {1, . . . , δ(U)}, Ran

(
W

χn

U

)
is an invariant subspace for the left regular

representation R of G, and the restriction of R to Ran
(
W

χn

U

)
is irreducible and unitarily

equivalent to U.
Therefore, each representation U ∈ Ǧ ‘occurs with multiplicity δ(U) in the left regular
representation R’, i.e. R is unitarily equivalent to the representation

⊕
U∈Ǧ

δ(U)︷ ︸︸ ︷
U ⊕ · · · ⊕ U . (2.14)

Assuming that the Haar measure μG is normalized as usual for compact groups—i.e. that
μG(G) = 1—we have

δ(U)

∫
G

〈φ1, U(g)ψ1〉 〈U(g)ψ2, φ2〉 dμG(g) = 〈φ1, φ2〉 〈ψ2, ψ1〉, (2.15)

for all vectors φ1, ψ1, φ2, ψ2 ∈ H. Hence, the Duflo–Moore operator associated with the
square integrable representation U is of the form dU I , where dU = δ(U)−

1
2 .
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(3) Denoting by q̂, p̂ the standard position and momentum operators in L2(R), the map

U : R × R � (q, p) 	→ exp(i(pq̂ − qp̂)) ∈ U(L2(R)) (2.16)

is a projective representation of the (additive) group R × R. This representation is
square integrable and, fixing (2π)−1 dq dp as the Haar measure on R × R, we have that
D̂U = I ; see [23]. Therefore, the Haar measure (2π)−1dqdp is normalized in agreement
with U. If ψ0 ∈ L2(R) is the ground state of the quantum harmonic oscillator, then
{U(q, p)ψ0}q,p∈R is the family of standard coherent states [33, 34].

We conclude this section fixing some further notations and recalling a technical result.

The symbol Ĉ will indicate the closure of a closable operator Ĉ in H. Given a subspace
S of H, we will denote by S⊥ the orthogonal complement of S in H. We will denote by
B(H) the Banach space of bounded linear operators in H and by ‖·‖ the associated norm. We
recall that the Hilbert space B2(H) of Hilbert–Schmidt operators in H is a two-sided ideal
in B(H) [35]; the associated scalar product and norm will be denoted by 〈·, ·〉B2 and ‖·‖B2 ,
respectively. Another two-sided ideal in B(H) is the Banach space of trace class operators
B1(H) ⊂ B2(H). Given a measure space (X,μ), the locution ‘for μ-almost all x in X’ will
be usually substituted by the symbol ∀μx ∈ X. The following well-known result will turn
out to be very useful in section 5. Let the measure space (X,μ) be complete, and let {fn}n∈N

be a sequence in L2(X,μ; C) converging (in norm) to f . If there is a function f̃ : X → C
such that limn→∞ fn(x) = f̃ (x), ∀μx ∈ X, then f̃ is μ-measurable and we have that f = f̃ ,
the two functions being regarded as elements of L2(X,μ; C) (i.e. the two functions coincide
μ-almost everywhere).

3. Weyl–Wigner quantization–dequantization maps

Every square integrable representation of a l.c.s.c. group G gives rise to an isometry that maps
the space of Hilbert–Schmidt operators—acting in the Hilbert space of the representation—
into L2(G) ≡ L2(G,μG; C). Since it transforms operators into functions, it is called the
Wigner (dequantization) map. Its adjoint, which transforms functions into operators, is called
the Weyl (quantization) map.

Indeed—see [23–25]—a square integrable projective representation U : G → U(H) (with
multiplier m) allows us to associate with every Hilbert–Schmidt operator Â ∈ B2(H) a function
G � g 	→ (SUÂ)(g) ∈ C contained in L2(G), in such a way to define a linear map SU :
B2(H) → L2(G). To this aim, we exploit the fact that the finite rank operators form a dense
linear span FR(H) in the Hilbert space B2(H). Precisely—denoted by D̂U , as in section 2,
the Duflo–Moore operator associated with U (normalized according to μG)—consider those
operators in H of the type

φ̂ψ ≡ |φ〉〈ψ |, φ ∈ H, ψ ∈ Dom
(
D̂−1

U

)
. (3.1)

The linear span generated by the rank one operators of this form—namely,

FR〈|(H;U) := {
F̂ ∈ FR(H) : Ran(F̂ ∗) = Ker(F̂ )⊥ ⊂ Dom

(
D̂−1

U

)}
(3.2)

—is dense in FR(H) and, hence, in B2(H), i.e. FR〈|(H;U) = B2(H). Explicitly, the elements
of FR〈|(H;U) are those operators in FR(H) that admit a decomposition of the form

F̂ =
N∑

k=1

|φk〉〈ψk|, N ∈ N, (3.3)

6
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where {φk}N
k=1, {ψk}N

k=1 are linearly independent systems in H, with {ψk}N
k=1 ⊂ Dom

(
D̂−1

U

)
.

Incidentally, we also introduce another dense linear span in B2(H) that will turn out to be
useful later on, i.e.

FR|〉〈|(H;U) := {
F̂ ∈ FR(H) : Ran(F̂ ), Ran(F̂ ∗) ⊂ Dom

(
D̂−1

U

)}
. (3.4)

At this point, we first define the map SU on all rank one operators of the form (3.1) by
setting

(SU φ̂ψ)(g) := tr
(
U(g)∗|φ〉〈D̂−1

U ψ
∣∣) = 〈

U(g) D̂−1
U ψ, φ

〉
, ∀ φ̂ψ ∈ FR〈|(H;U). (3.5)

Then, by virtue of the orthogonality relations (2.5), for any φ̂1ψ1 ≡ |φ1〉〈ψ1|, φ̂2ψ2 ∈
FR〈|(H;U), we have∫

G

(SU φ̂1ψ1)(g)∗ (SU φ̂2ψ2)(g) dμG(g) = 〈φ1, φ2〉 〈ψ2, ψ1〉 = 〈φ̂1ψ1, φ̂2ψ2〉B2 . (3.6)

Thus, extending the definition of the map SU to all FR〈|(H;U) by linearity, and next to the
whole Hilbert space B2(H) by continuity, we obtain an isometry—SU : B2(H) → L2(G)—
i.e. the (generalized) Wigner map, or Wigner transform, generated by U. It turns out that the
range of SU , which will be denoted byRU , depends only on the unitary equivalence class of U.
Moreover, as the reader may prove, if the group G is unimodular (hence, D̂U = dUI , dU > 0),
then for every trace class operator ρ̂ ∈ B1(H), we have (SU ρ̂)(g) = d−1

U tr(U(g)∗ρ̂).

Remark 3.1. Suppose that U is, in particular, a standard unitary representation, and let V be
another square integrable unitary representation of G (acting in a Hilbert space H′), unitarily
inequivalent to U. Then, it is easy to show that

(RU ≡ Ran(SU)) ⊥ Ran(SV ), (3.7)

where SV : B2(H′) → L2(G) is the Wigner map generated by V.

Remark 3.2. Suppose that the group G is compact—hence, unimodular—and U is a
(irreducible) unitary representation. Then, by relation (2.13), we have

L2(G)[U ] =
δ(U)⊕
n=1

Ran
(
W

χn

U

) = span
{
cU
ψ,φ : ψ, φ ∈ H

} = RU , (3.8)

where the function cU
ψ,φ ∈ L2(G) is the coefficient defined by (2.4). Therefore, by relation

(2.12),

L2(G) =
⊕
U∈Ǧ

RU , (3.9)

for any realization Ǧ of the unitary dual of G.

We will now explore the ‘intertwining properties’ of the Wigner map SU with respect
to the natural action of the group G in the Hilbert–Schmidt space B2(H), and to the standard
complex conjugation in B2(H).

To this aim, consider the map U ∨ U : G → U(B2(H)) defined by

U ∨ U(g)Â := U(g) Â U(g)∗, g ∈ G, Â ∈ B2(H). (3.10)

The map U ∨ U is a (strongly continuous) unitary representation, even if, in general, the
representation U has been assumed to be projective. It can be regarded as the standard action
of the ‘symmetry group’ G on the ‘quantum-mechanical operators’ (‘observables’ or ‘states’).
Next, let us consider the map Tm : G → U(L2(G)) defined by

(Tm(g)f )(g′) := �G(g)
1
2
↔
m(g, g′)f (g−1g′g), g, g′ ∈ G, f ∈ L2(G), (3.11)

7
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where the function
↔
m : G × G → T has the following expression:

↔
m(g, g′) := m(g, g−1g′)∗m(g−1g′, g). (3.12)

As the reader may check, also the map Tm is a unitary representation. For m ≡ 1, it coincides
with the restriction to the ‘diagonal subgroup’ of the two-sided regular representation of the
direct product group G×G; see [27, 36]. The link between the unitary representations defined
by (3.10) and (3.11) is provided by the following result.

Proposition 3.1. The Wigner transform SU intertwines the representation U ∨ U with the
representation Tm, namely

SUU ∨ U(g) = Tm(g)SU , ∀ g ∈ G. (3.13)

Therefore, RU is an invariant subspace for the unitary representation Tm and the representation
U ∨ U is unitarily equivalent to a subrepresentation of Tm, i.e. to the restriction of Tm to RU .

Proof. One can easily prove that SUU ∨ U(g)φ̂ψ = Tm(g)SU φ̂ψ , for any rank one
operator φ̂ψ of the form (3.1). This relation extends to the linear span generated by the rank
one operators of such form, i.e. to the dense linear span FR〈|(H;U). Therefore, the bounded
operators SUU ∨ U(g) and Tm(g)SU coincide on a dense linear span in B2(H); hence, they
are equal. �

Let us consider, now, the antilinear map Jm : L2(G) → L2(G) defined by

(Jmf )(g) := �G(g)−
1
2 m(g, g−1) f (g−1)∗, ∀ f ∈ L2(G). (3.14)

We leave to the reader the easy task of verifying that the map Jm is (well defined and) a complex
conjugation in L2(G): Jm = J∗

m and J2
m = I (i.e. Jm is a self-adjoint antiunitary map).

Proposition 3.2. The isometry SU intertwines the standard complex conjugation

J : B2(H) � Â 	→ Â∗ ∈ B2(H) (3.15)

in the Hilbert space B2(H) with the complex conjugation Jm in L2(G), namely

SUJ = JmSU . (3.16)

Therefore, RU is an invariant subspace for the complex conjugation Jm.

Proof. The proof is analogous to the proof of proposition 3.1; we leave the details to the
reader. Hint: this time prove that relation (3.16) holds in the dense linear span FR|〉〈|(H;U),
at first. �

Since the generalized Wigner transform SU is an isometry, its adjoint S∗
U : L2(G) →

B2(H) is a partial isometry such that S∗
U SU = I and SU S∗

U = PRU
, where PRU

is the

orthogonal projection onto the (closed) subspace RU ≡ Ran(SU) = Ker(S∗
U) of L2(G).

Thus, the partial isometry S∗
U is the pseudo-inverse of SU , and we will call it (generalized)

Weyl map generated by the representation U.
Let us provide an expression of the Weyl map. As is well known, the weak integral

Û (f) :=
∫

G

f(g)U(g) dμG(g), ∀ f ∈ L1(G), (3.17)

defines a bounded operator in H (here the square integrability of U does not play any role).
Then, one can easily prove the following result.

8
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Proposition 3.3. For every f ∈ L1(G)∩L2(G), the densely defined operator Û (f)D̂−1
U extends

to a Hilbert–Schmidt operator and

Û (f)D̂−1
U = S∗

U f. (3.18)

Therefore, for every function f ∈ L2(G)—given a sequence {fn}n∈N in L2(G), contained in
the dense linear span L1(G) ∩ L2(G), such that ‖·‖L2 limn→∞ fn = f —we have

S∗
Uf = ‖·‖B2 lim

n→∞ S∗
U fn = ‖·‖B2 lim

n→∞ Û (fn)D̂
−1
U . (3.19)

In the case where the group G is unimodular, the following weak integral formula holds:

S∗
Uf = d−1

U

∫
G

f (g)U(g) dμG(g), ∀ f ∈ L2(G). (3.20)

We will finally establish a result that will be useful in section 6. We leave the
(straightforward) proof of this result to the reader.

Proposition 3.4. Suppose that the Hilbert space H of the representation U is a space
L2(X) ≡ L2(X,μ; C) of square integrable functions on a σ -finite measure space (X,μ).
Then, for every f ∈ L1(G) and every φ ∈ L2(X), the function G � g 	→ f(g) (U(g) φ)(x) ∈ C
belongs to L1(G) for μ-a.a. x ∈ X, and the following relation holds:

(Û(f)φ)(x) =
∫

G

f(g) (U(g) φ)(x) dμG(g), ∀μx ∈ X. (3.21)

Therefore, for every f ∈ L1(G) ∩ L2(G) and every ϕ ∈ Dom
(
D̂−1

U

) ⊂ L2(X), we have

((S∗
U f)ϕ)(x) =

∫
G

f(g)
(
U(g) D̂−1

U ϕ
)
(x) dμG(g), ∀μx ∈ X. (3.22)

4. Star products from quantization–dequantization maps

In this section, we will show that the quantization–dequantization maps previously introduced
induce, in a natural way, a ‘star product of functions’ enjoying remarkable properties. Let
U be a square integrable (irreducible) projective representation of the l.c.s.c. group G in the
Hilbert space H, and let SU : B2(H) → L2(G) be the associated Wigner map. Consider the
following bilinear map from L2(G) × L2(G) into L2(G):

(·) U
� (·) : L2(G) × L2(G) � (f1, f2) 	→ SU

((
S∗

Uf1
)(

S∗
Uf2

)) ∈ L2(G), (4.1)

i.e. f1
U
� f2 is the function obtained dequantizing the product (composition) of the two

operators which are the ‘quantized versions’ of the functions f 1, f 2. We will call the bilinear
map (4.1) the star product associated with the representation U.

Before considering the properties of the star product associated with U, it is worth fixing
some terminology about algebras. By a Banach algebra, we mean an associative algebra A
which is a Banach space (with norm ‖·‖A) such that

‖ab‖A � ‖a‖A ‖b‖A, ∀ a, b ∈ A. (4.2)

Given Banach algebras A and A′, we will say that a linear map E : A → A′ is an (isometric)
isomorphism of Banach algebras if it is a surjective isometry such that E(ab) = E(a)E(b),
for all a, b ∈ A.

9
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A Banach algebra A—endowed with an involution2 (a 	→ a∗)—such that

‖a‖A = ‖a∗‖A, ∀ a ∈ A (4.3)

will be called a Banach ∗-algebra (Banach star-algebra; of course, the ‘star’ in ∗-algebra,
which refers to an involution, should not generate confusion with the ‘star’ product).

A Banach ∗-algebra A is said to be a H∗-algebra [37, 38] if, in addition, it is a (separable
complex) Hilbert space (with ‖a‖A = √〈a, a〉A) satisfying

〈ab, c〉A = 〈b, a∗c〉A and 〈ab, c〉A = 〈a, cb∗〉A, ∀ a, b, c ∈ A. (4.4)

Clearly, condition (4.3) now means that the involution A � a 	→ a∗ ∈ A is a complex
conjugation (an idempotent antiunitary operator). For every element x of a A, the two
relations xA = {0} and Ax = {0} turn out to be equivalent. The annihilator ideal of A is the
set A0 defined by

A0 := {x ∈ A : xA = {0}} = {x ∈ A : Ax = {0}}. (4.5)

The annihilator ideal is a self-adjoint (i.e. for every x ∈ A0, x∗ belongs to A0 as well) closed
two-sided ideal in A. The H∗-algebra A is said to be proper (or semi-simple) if it satisfies the
following two equivalent conditions:

(x ∈ A, xA = {0} ⇒ x = 0) and (x ∈ A, Ax = {0} ⇒ x = 0) , (4.6)

namely, if A0 = {0}. Every H∗-algebra A admits an orthogonal sum decomposition of the
following type:

A = A0 ⊕ A1, (4.7)

where A0 is the annihilator ideal of A, and A1 is a self-adjoint closed two-sided ideal which
(endowed with the restrictions of the algebra operation and of the involution of A) is a proper
H∗-algebra. We will callA1 the canonical ideal ofA, and we will denote by PA1

the orthogonal
projection onto A1. The canonical ideal is characterized by the relation

ab = (PA1
a)(PA1

b), ∀ a, b ∈ A, (4.8)

in the following sense. Suppose that Ã ⊂ A is a closed two-sided ideal, which is a proper
H∗-algebra such that ab = (PÃa)(PÃb), ∀ a, b ∈ A. Then, it is easy to show that Ã = A1.

A linear map E : A → A′—where A, A′ are H∗-algebras—is said to be an isomorphism
of H∗-algebras if it is a unitary operator such that

E(ab) = E(a)E(b) and E(a∗) = E(a)∗, ∀ a, b ∈ A. (4.9)

As is well known, the Hilbert space B2(H) is a proper H∗-algebra with respect to the
ordinary composition of operators (algebra operation) and to the standard complex conjugation
J (involution), see (3.15).

The star product defined above is characterized by the following result, whose proof,
being straightforward, is left to the reader.

Proposition 4.1. The bilinear map (·) U
� (·) : L2(G) × L2(G) → L2(G) associated with the

square integrable projective representation U enjoys the following properties:

(i) the vector space L2(G), endowed with the operation (·) U
� (·), is an associative algebra;

2 Let V be a vector space, and (·, ·) : V × V → V a bilinear operation in V. We recall that an an involution in
V, with respect to the bilinear operation (·, ·), is an antilinear map V � a 	→ a∗ ∈ V satisfying (a∗)∗ = a and
(a, b)∗ = (b∗, a∗), ∀ a, b ∈ V.

10
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(ii) the antilinear map Jm is an involution in the vector space L2(G) with respect to the bilinear

operation (·) U
� (·), i.e.

Jm(Jmf ) = f and Jm(f1
U
� f2) = (Jmf2)

U
� (Jmf1), ∀ f, f1, f2 ∈ L2(G);

(4.10)

(iii) L2(G)—regarded as a Banach space with respect to the norm ‖·‖L2 , and endowed with
the the star product associated with U and with the involution Jm—is a Banach ∗-algebra;
in particular, it satisfies the relation∥∥f1

U
� f2

∥∥
L2 � ‖f1‖L2‖f2‖L2 , ∀ f1, f2 ∈ L2(G); (4.11)

(iv) AU ≡ (L2(G), (·) U
� (·), Jm) is a H∗-algebra; indeed, for all f1, f2, f3 ∈ L2(G),〈

f1
U
� f2, f3

〉
L2 = 〈

f2, (Jmf1)
U
� f3

〉
L2 and〈

f1
U
� f2, f3

〉
L2 = 〈

f1, f3
U
� (Jmf2)

〉
L2; (4.12)

(v) for any f1, f2 ∈ L2(G), we have that

f1
U
� f2 ∈ RU ; (4.13)

therefore, the (closed) subspace RU ≡ Ran(SU) of L2(G) is a closed two-sided ideal in
AU and—endowed with the restrictions of the star product associated with U and of the
involution Jm (RU is an invariant subspace for Jm, see proposition 3.2)—is a H∗-algebra;

(vi) the H∗-algebra RU is proper and, for any f1, f2 ∈ L2(G), we have that

f1
U
� f2 = (

PRU
f1

) U
�

(
PRU

f2
); (4.14)

hence, RU and its orthogonal complement R⊥
U are, respectively, the canonical ideal and

the annihilator ideal of AU , and the H∗-algebra AU is proper if and only if RU = L2(G);
(vii) the unitary operator

B2(H) � Â 	→ SUÂ ∈ RU (4.15)

is an isomorphism of (proper) H∗-algebras;
(viii) the canonical ideal RU is an invariant subspace for the representation Tm — (see (3.11))—

and the star product associated with U is equivariant with respect to this representation,
i.e.

Tm(g)
(
f1

U
� f2

) = (Tm(g)f1)
U
� (Tm(g)f2), ∀ f1, f2 ∈ L2(G), ∀ g ∈ G. (4.16)

It is interesting to note that the definition of the star product (4.1) can be suitably
generalized. In fact, since B2(H) is a two-sided ideal in B(H), with every bounded operator
K̂ ∈ B(H) is associated a bilinear map (·) ◦

K̂
(·) : B2(H) × B2(H) → B2(H)—the K̂-product

(this notion has been considered for ‘generic operators’ in [19, 20]) in B2(H)—defined by

Â ◦
K̂
B̂ := ÂK̂B̂, ∀ Â, B̂ ∈ B2(H). (4.17)

Observe that B2(H), endowed with the operation (·) ◦
K̂
(·), is an associative algebra, and, if K̂ is

self-adjoint, then J is an involution in B2(H) with respect to this operation. Moreover—since
‖ÂK̂B̂‖B2 � ‖K̂‖‖Â‖B2‖B̂‖B2 —it is clear that if ‖K̂‖ � 1, then (B2(H), (·) ◦

K̂
(·)) is a Banach

11



J. Phys. A: Math. Theor. 42 (2009) 475210 P Aniello

algebra; if, furthermore, K̂ is self-adjoint, then (B2(H), (·) ◦
K̂
(·), J) is a Banach ∗-algebra. The

operation (4.17) allows us to introduce the following bilinear map:

(·) U
�
K̂

(·) : L2(G) × L2(G) � (f1, f2) 	→ SU

((
S∗

Uf1
)

◦
K̂

(
S∗

Uf2
)) ∈ L2(G). (4.18)

We will call the operation (4.18) K̂-deformed star product associated with U. Obviously, the
K̂-deformed star product coincides with the star product defined by (4.1) in the case where
K̂ = I . The main properties of K̂-deformed star product are summarized by the following
proposition, whose proof we leave to the reader.

Proposition 4.2. For every bounded operator K̂ ∈ B(H), the bilinear map (·) U
�
K̂

(·):
L2(G) × L2(G) → L2(G) enjoys the following properties:

(i) the vector space L2(G), endowed with the operation (·) U
�
K̂

(·), is an associative algebra;

(ii) in the case where the operator K̂ is self-adjoint, the antilinear map Jm is an involution in

the vector space L2(G) with respect to the bilinear operation (·) U
�
K̂

(·), i.e.

Jm(Jmf ) = f and Jm
(
f1

U
�
K̂

f2
) = (Jmf2)

U
�
K̂

(Jmf1),

∀ f, f1, f2 ∈ L2(G); (4.19)

(iii) if ‖K̂‖ � 1, then L2(G)—regarded as a Banach space with respect to the norm ‖·‖L2 , and
endowed with the K̂-deformed star product associated with U—is a Banach algebra; in
particular, it satisfies the relation∥∥f1

U
�
K̂

f2

∥∥
L2 � ‖f1‖L2‖f2‖L2 , ∀ f1, f2 ∈ L2(G); (4.20)

if, furthermore, the operator K̂ is self-adjoint, then
(
L2(G), (·) U

�
K̂

(·), Jm
)

is a Banach

∗-algebra;
(iv) for any f1, f2 ∈ L2(G), we have that

f1
U
�
K̂

f2 ∈ RU ; (4.21)

therefore—assuming that ‖K̂‖ � 1—the (closed) subspace RU of L2(G) is a closed
two-sided ideal in the Banach algebra (B2(H), (·) ◦

K̂
(·));

(v) for any f1, f2 ∈ L2(G), we have that

f1
U
�
K̂

f2 = (
PRU

f1
) U
�
K̂

(
PRU

f2
); (4.22)

(vi) assuming that ‖K̂‖ � 1, the application

B2(H) � Â 	→ SUÂ ∈ RU (4.23)

is an isomorphism of the Banach algebras (B2(H), (·) ◦
K̂
(·)) and

(
RU , (·) U

�
K̂

(·)).

5. Main results: explicit formulas for star products

The aim of this section is to provide suitable expressions for the star products associated with
square integrable representations that have been defined and characterized in section 4. For
the sake of clarity, we will split our presentation into a few subsections.

12
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5.1. Assumptions and further notations

In the following, we will always assume that U is a square integrable (irreducible) projective
representation—with multiplier m—of the l.c.s.c. group G in the Hilbert space H. We will
denote, as usual, by D̂U the associated Duflo–Moore operator, normalized according to a given
left Haar measure μG on G. Recall that, if G is unimodular, then D̂U = dUI , dU > 0; otherwise,
D̂U is unbounded. We will use—often without any further explanation—the notations and the
tools introduced in sections 2–4; in particular, we will exploit the orthogonality relations for
square integrable representations and the result recalled at the end of section 2.

Before starting our program, it is worth fixing a few additional notations. It will be
convenient to adopt the shorthand notation

∫
dμG for the integral

∫
G

dμG. We will denote
by ‖·‖L2 limn→∞ the limit of a sequence in L2(G) (converging with respect to the norm ‖·‖L2 ).
Given a finite or countably infinite index set N = {n}, we denote by ‖·‖L2

∑
n either simply a

finite sum in L2(G) (N finite), or an infinite sum in L2(G) converging with respect to the norm
‖·‖L2 . Clearly, an analogous meaning will be understood for the symbol ‖·‖B2

∑
n (of course,

in this case the relevant space is B2(H)), or, in general, ‖·‖
∑

n. Given a bounded operator B̂

in H, we can define two natural bounded operators in the Hilbert–Schmidt space B2(H), i.e.
the operators

LB̂ : B2(H) � Â 	→ B̂Â ∈ B2(H), RB̂ : B2(H) � Â 	→ Â B̂ ∈ B2(H). (5.1)

It is obvious that LB̂RB̂ ′ = RB̂ ′LB̂ . In particular, given a vector χ ∈ H, we will denote by
Rχ̂ the bounded linear operator in B2(H) defined by

Rχ̂ : B2(H) � Â 	→ Â χ̂ ∈ B2(H), (5.2)

where we set: χ̂ ≡ χ̂χ ≡ |χ〉〈χ |. It is clear that—for χ nonzero and normalized—Rχ̂ is an
orthogonal projector in the Hilbert space B2(H).

Remark 5.1. Let J be a complex conjugation in H (a self-adjoint antiunitary operator). Then,
the bounded linear map UJ : H ⊗ H → B2(H), determined (in a consistent way) by

UJ φ ⊗ ψ = |φ〉〈Jψ |, ∀φ,ψ ∈ H, (5.3)

is a unitary operator (indeed, it is an isometry on the dense linear span generated by the
separable elements of H ⊗ H, and the image of this linear span is FR(H), which is dense in
B2(H)). It is easy to check that UJ (I ⊗ χ̂)U∗

J = Rχ̂ ′ , where χ̂ ′ = J χ̂J = |Jχ〉〈Jχ |. Let
{χn}n∈N be an orthonormal basis in H. One can always choose the complex conjugation J in
such a way that Jχn = χn, for any n ∈ N ; hence: UJ (I ⊗ χ̂n)U

∗
J = Rχ̂n

, with χ̂n ≡ |χn〉〈χn|.
This choice of J is convenient for noting the fact that the relation ‖·‖

∑
n(I ⊗ χ̂n�) = �,

∀� ∈ H ⊗ H is equivalent to ‖·‖B2

∑
n Rχ̂n

Â = Â,∀ Â ∈ B2(H).

Besides, given a vector χ contained in the dense linear span Dom
(
D̂−1

U

)
, let χ̆ be the

linear operator in H, of rank at most one, defined by

χ̆ := |χ〉〈D̂−1
U χ

∣∣. (5.4)

Then, we can consider the bounded linear operator Rχ̆ : B2(H) � Â 	→ Â χ̆ ∈ B2(H). Note
that, if the group G is unimodular, we have Rχ̆ = d−1

U Rχ̂ .
Let us also introduce two integral kernels. Our formulas for star products will be based

on these kernels. First—for any bounded operator K̂ in H and any vector χ ∈ H, contained in
the dense linear span Dom

(
D̂−2

U

)
—consider the integral kernel U(K̂, χ; ·, ·) : G × G → C

defined by

U(K̂, χ; g, h) := 〈
U(g) D̂−2

U χ, K̂ U(h) D̂−1
U χ

〉 = 〈
K̂∗U(g) D̂−2

U χ,U(h) D̂−1
U χ

〉
. (5.5)
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For notational convenience, we set U(χ; g, h) ≡ U(I, χ; g, h) = 〈
U(g) D̂−2

U χ,

U(h) D̂−1
U χ

〉
. Next, again for every vector χ contained in Dom

(
D̂−2

U

)
, let κU(χ; ·, ·, ·) :

G × G × G → C be the integral kernel defined by

κU(χ; g, h, h′) := 〈
U(g) D̂−1

U χ,U(h) D̂−1
U U(h′) D̂−1

U χ
〉
. (5.6)

Exploiting relation (2.8) and the fact that

U(h−1g) = m(h−1, g)U(h−1) U(g) = m(h−1, g) m(h, h−1)∗ U(h)∗U(g)

= m(h, h−1g)∗ U(h)∗U(g), (5.7)

we find

κU(χ; g, h, h′) = m(h, h−1g)∗�G(h−1g)
1
2 U(χ;h−1g, h′), ∀ g, h, h′ ∈ G. (5.8)

Observe that—since U(K̂, χ; g, ·) = SU

(∣∣K̂∗U(g) D̂−2
U χ

〉〈χ |)∗
—for any g ∈ G, we have

that the function G � h 	→ U(K̂, χ; g, h) ∈ C belongs to L2(G). Moreover, by relation
(5.8), for any g, h ∈ G, the function G � h′ 	→ κU(χ; g, h, h′) ∈ C belongs to L2(G), as
well.

5.2. Preliminary results

The following result will turn out to be fundamental for our purposes.

Proposition 5.1. For every bounded operator K̂ ∈ B(H), for every function f ∈ L2(G) and
for every vector χ ∈ Dom

(
D̂−2

U

)
, the following formula holds:(

SURχ̆LK̂S∗
Uf

)
(g) =

∫
dμG(h) U(K̂, χ; g, h) f (h), ∀μG

g ∈ G. (5.9)

Proof. Indeed, for every f ∈ L2(G), we have∫
dμG(h) U(K̂, χ; g, h) f (h) = 〈

SU

(∣∣K̂∗U(g) D̂−2
U χ

〉〈χ |), f 〉
L2

= 〈
K̂∗∣∣U(g) D̂−2

U χ
〉〈χ |,S∗

Uf
〉
B2

= 〈
U(g) D̂−2

U χ, K̂
(
S∗

Uf
)
χ

〉
, ∀μG

g ∈ G. (5.10)

Hence, we conclude that∫
dμG(h) U(K̂, χ; g, h) f (h) = (

SU

(
K̂

(
S∗

Uf
)|χ〉〈D̂−1

U χ
∣∣))(g)

= (SURχ̆LK̂S∗
Uf )(g), (5.11)

∀μG
g ∈ G. The proof of formula (5.9) is complete. �

At this point, in order to prove the main result of the paper—i.e. theorem 5.1—we need
to pass through three technical results. The third one (lemma 5.3) ‘essentially contains’ the
expression of the star product, already, but it requires a refinement (see proposition 5.2 below)
before getting to the main theorem swiftly.

Lemma 5.1. For every f ∈ L2(G) and for every g ∈ G, the following relation holds:

(Rm(g)Jmf )(h)∗ = m(h, h−1g)∗�G(h−1g)
1
2 f (h−1g), (5.12)

∀μG
h ∈ G. Therefore, for any f1, f2 ∈ L2(G) and for every g ∈ G, the function

G � h 	→ f1(h) m(h, h−1g)∗�G(h−1g)
1
2 f2(h

−1g) ∈ C (5.13)
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belongs to L1(G) and∫
dμG(h) f1(h) m(h, h−1g)∗�G(h−1g)

1
2 f2(h

−1g) = 〈Rm(g)Jmf2, f1〉L2 . (5.14)

Proof. Use the definition of the representation Rm : G → U(L2(G)) (see (2.10)) and of
the complex conjugation Jm : L2(G) → L2(G) (see (3.14)), and then suitably exploit formula
(2.3) for manipulating multipliers. �

Lemma 5.2. For any f1, f2 ∈ L2(G) and for every χ ∈ Dom
(
D̂−2

U

)
, the following relation

holds:∫
dμG(h)

∫
dμG(h′) κU (χ; g, h, h′) f1(h)f2(h

′) = 〈
Rm(g)JmSURχ̆S∗

Uf2, f1
〉
L2 . (5.15)

Proof. Taking into account (5.8), by relation (5.9)—with K̂ = I—we obtain:∫
dμG(h′) κU (χ; g, h, h′) f2(h

′)

= m(h, h−1g)∗�G(h−1g)
1
2

∫
dμG(h′) U(χ;h−1g, h′) f2(h

′)

= m(h, h−1g)∗�G(h−1g)
1
2
(
SURχ̆S∗

Uf2
)
(h−1g). (5.16)

At this point, relation (5.15) is a straightforward consequence of lemma 5.1. �

Lemma 5.3. Let χ be a vector belonging to Dom
(
D̂−2

U

)
. Then, for every φ1 ∈ H, and for

any ψ1, ψ2, φ2 contained in Dom
(
D̂−1

U

)
—setting, as usual, φ̂jψj ≡ |φj 〉〈ψj |, j = 1, 2—we

have

(SURχ̂ (φ̂1ψ1φ̂2ψ2))(g) =
∫

dμG(h)

∫
dμG(h′) κU (χ; g, h, h′)

× (SU φ̂1ψ1)(h) (SU φ̂2ψ2)(h
′), ∀μG

g ∈ G. (5.17)

Proof. First observe that∫
dμG(h′) κU (χ; g, h, h′) (SU φ̂2ψ2)(h

′)

=
∫

dμG(h′)
〈
D̂−1

U U(h)∗U(g) D̂−1
U χ,U(h′) D̂−1

U χ
〉〈
U(h′)D̂−1

U ψ2, φ2
〉

= 〈ψ2, χ〉 〈
U(g)D̂−1

U χ,U(h)D̂−1
U φ2

〉
, (5.18)

∀h, g ∈ G, where we have used the fact that φ2 is contained in Dom
(
D̂−1

U

)
. Then, exploiting

relation (5.18) and the fact that∫
dμG(h)

〈
U(g)D̂−1

U χ,U(h)D̂−1
U φ2

〉 〈
U(h)D̂−1

U ψ1, φ1
〉 = 〈ψ1, φ2〉

〈
U(g)D̂−1

U χ, φ1
〉

(5.19)

—note that
〈
U(h)D̂−1

U ψ1, φ1
〉 = (SU φ̂1ψ1)(h)—we find∫

dμG(h)

∫
dμG(h′) κU (χ; g, h, h′) (SU φ̂1ψ1)(h) (SU φ̂2ψ2)(h

′)

= 〈ψ2, χ〉 〈ψ1, φ2〉
〈
U(g)D̂−1

U χ, φ1
〉 = SU(φ̂1ψ1φ̂2ψ2χ̂ )(g). (5.20)

The proof is complete. �
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As anticipated, the following result can be regarded as a generalization of Lemma 5.3. It
will allow us to prove the main result of the paper in a straightforward and transparent way.

Proposition 5.2. Let χ be a vector contained in Dom
(
D̂−2

U

)
. Then, for any f1, f2 ∈ L2(G),

the following formula holds:

SURχ̂

((
S∗

Uf1
)(

S∗
Uf2

)) =
∫

dμG(h)

∫
dμG(h′) κU (χ; ·, h, h′) f1(h) f2(h

′). (5.21)

Proof. By Lemma 5.3, relation (5.21) holds for any pair of functions f1, f2 belonging
to the linear span SU(FR|〉〈|(H;U)) (see (3.4)), which is dense in RU . Moreover—since
Ker(S∗

U) = R⊥
U , and RU is an invariant subspace for the complex conjugation Jm and for the

representation Rm—for any pair of functions f1, f2 ∈ L2(G), of which at least one is contained
in R⊥

U , we have〈
Rm(g)JmSURχ̆S∗

Uf2, f1
〉
L2 = 0. (5.22)

Thus, if f 1 and/or f 2 is contained in R⊥
U , recalling relation (5.15), we conclude that∫

dμG(h)

∫
dμG(h′) κU (χ; ·, h, h′) f1(h)f2(h

′) = 0. (5.23)

Therefore, relation (5.21) is satisfied by f1, f2 in the dense linear span SU(FR|〉〈|(H;U))+R⊥
U .

In the case where the Hilbert spaceH is finite-dimensional (hence, G is unimodular), this linear
span actually coincides with L2(G) itself and the proof is complete.

Let us assume, instead, that dim(H) = ∞, and let us prove relation (5.21) for a generic
pair of functions in L2(G). To this aim, consider first a pair of functions f1, f2 of this kind:
f 1 is an arbitrary function contained in the dense linear span SU(FR|〉〈|(H;U)) + R⊥

U , and
f 2 any function belonging to L2(G). Next, take a sequence of functions {f2;n}n∈N ⊂ L2(G),
contained in SU(FR|〉〈|(H;U)) + R⊥

U and converging (with respect to the norm ‖·‖L2 ) to f 2.
Then, we have

‖·‖L2 lim
n→∞ SURχ̂

((
S∗

Uf1
)(

S∗
Uf2;n

)) = SURχ̂

((
S∗

Uf1
)(

S∗
Uf2

))
. (5.24)

On the other hand, by the first part of the proof and by lemma 5.2, we have that

lim
n→∞

(
SURχ̂

((
S∗

Uf1
)(

S∗
Uf2;n

)))
(g)

= lim
n→∞

∫
dμG(h)

∫
dμG(h′) κU (χ; g, h, h′) f1(h)f2;n(h′)

= lim
n→∞

〈
Rm(g)JmSURχ̆S∗

Uf2;n, f1
〉
L2

= 〈
Rm(g)JmSURχ̆S∗

Uf2, f1
〉
L2

=
∫

dμG(h)

∫
dμG(h′) κU (χ; g, h, h′) f1(h)f2(h

′). (5.25)

From relations (5.24) and (5.25), it descends that formula (5.21) holds true for any pair of
functions f 1 contained in the linear span

(
SU(FR|〉〈|(H;U)) + R⊥

U

)
and f2 ∈ L2(G). At this

point, using this result and a density argument analogous to the one adopted for obtaining it,
one proves relation (5.21) for a generic pair of functions in L2(G). �
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5.3. Formulas for star products

We are now ready to prove the theorem that can be regarded as the main result of the paper.
It provides a simple expression for the star product associated with the square integrable
projective representation U.

Theorem 5.1. Let {χn}n∈N be an orthonormal basis in H, contained in the dense linear span
Dom

(
D̂−2

U

)
. Then, for any f1, f2 ∈ L2(G), the following formula holds:

f1
U
� f2 = ‖·‖L2

∑
n

∫
dμG(h)

∫
dμG(h′)κU (χn; ·, h, h′)f1(h)f2(h

′), (5.26)

where the integral kernel κU(χn; ·, ·, ·) : G × G × G → C is defined by (5.6), i.e.

κU(χn; g, h, h′) := 〈
U(g) D̂−1

U χn,U(h) D̂−1
U U(h′) D̂−1

U χn

〉
. (5.27)

Proof. In order to prove formula (5.26), we can exploit relation (5.21) and the fact that

‖·‖B2

∑
n

Rχ̂n
Â = Â, ∀ Â ∈ B2(H), (5.28)

where χ̂n ≡ |χn〉〈χn|, as usual; see remark 5.1. Indeed, for any f1, f2 ∈ L2(G), we have

‖·‖L2

∑
n

∫
dμG(h)

∫
dμG(h′)κU (χn; ·, h, h′)f1(h)f2(h

′)

= ‖·‖L2

∑
n

SURχ̂n

((
S∗

Uf1
)(

S∗
Uf2

))
= SU ‖·‖B2

∑
n

Rχ̂n

((
S∗

Uf1
)(

S∗
Uf2

))
= SU

((
S∗

Uf1
)(

S∗
Uf2

))
. (5.29)

By definition, the last member of (5.29) is equal to f1
U
� f2. �

Remark 5.2. One can readily derive from formula (5.26) various alternative expressions for
the star product; in particular, by relation (5.8) we have

f1
U
� f2 = ‖·‖L2

∑
n

∫
dμG(h)f1(h)m(h, h−1(·))∗�G(h−1(·)) 1

2

×
∫

dμG(h′)U(χn;h−1(·), h′)f2(h
′). (5.30)

By the change of variables h 	→ gh and h 	→ h−1further expressions can be obtained.

Theorem 5.1 has various implications. First of all, it is remarkable that, in the case
where G is unimodular, the star product associated with the representation U admits a simple
alternative expression.

Corollary 5.1. Suppose that the l.c.s.c. group G is unimodular. Then, for any f1, f2 ∈ L2(G),
we have(
f1

U
� f2

)
(g) = d−1

U

∫
dμG(h) f1(h) m(h, h−1g)∗

(
PRU

f2
)
(h−1g)

= d−1
U

∫
dμG(h)

(
PRU

f1
)
(h)m(h, h−1g)∗f2(h

−1g)

= d−1
U

∫
dμG(h)

(
PRU

f1
)
(h)m(h, h−1g)∗

(
PRU

f2
)
(h−1g), ∀μG

g ∈ G.

(5.31)
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Therefore, for any f1, f2 ∈ RU , the following formula holds:(
f1

U
� f2

)
(g) = d−1

U

∫
dμG(h) f1(h) m(h, h−1g)∗f2(h

−1g), ∀μG
g ∈ G. (5.32)

Proof. Let f1, f2 be functions in L2(G). Then—using formula (5.26), relation (5.15) and
the fact that, being G unimodular, Rχ̆ = d−1

U Rχ̂ —we have

f1
U
� f2 = ‖·‖L2

∑
n

∫
dμG(h)

∫
dμG(h′)κU (χn; ·, h, h′)f1(h)f2(h

′)

= ‖·‖L2

∑
n

〈
Rm(·)JmSURχ̆n

S∗
Uf2, f1

〉
L2

= d−1
U ‖·‖L2

∑
n

〈
Rm(·)JmSURχ̂n

S∗
Uf2, f1

〉
L2 . (5.33)

On the other hand—by virtue of the continuity of the scalar product in L2(G) and of the
boundedness of the operators Rm(g), Jm and SU , and exploiting relations (5.28) and, then,
(5.12) (with �G ≡ 1)—we also have that∑

n

〈
Rm(g)JmSURχ̂n

S∗
Uf2, f1

〉
L2 = 〈Rm(g)JmSUS∗

Uf2, f1〉L2

= 〈
Rm(g)JmPRU

f2, f1
〉
L2

=
∫

dμG(h) f1(h) m(h, h−1g)∗
(
PRU

f2
)
(h−1g). (5.34)

Relations (5.33) and (5.34) imply that the first of equations (5.31) holds true; the
other two are obtained using the fact that PRU

is a projector satisfying Rm(g)JmPRU
=

PRU
Rm(g)Jm. �

Remark 5.3. We stress that the particularly simple formula (5.32)—differently from formula
(5.26)—holds for any pair of functions f1, f2 ∈ L2(G) of which at least one belongs to
the (closed) subspace RU of L2(G), which is the canonical ideal of the H∗-algebra AU , see
proposition 4.1. The rhs of (5.32) is a ‘twisted convolution’ generalizing the standard twisted
convolution [4] that appears in the case where G is the group of translations on phase space
and U is the projective representation (2.16) (we will examine this case in section 6).

Let us derive another consequence of theorem 5.1. In the case where the group G is
compact (hence, unimodular), there is a precise link between the convolution product in
L2(G) [27] and the star products associated with a realization Ǧ of the unitary dual of G.

Corollary 5.2. Suppose that the l.c.s.c. group G is compact and that the Haar measure μG is
normalized as usual for compact groups, i.e. that μG(G) = 1. Then, for any f1, f2 ∈ L2(G),
the following formula holds:

L2(G) �
∫

dμG(h) f1(h) f2(h
−1(·)) = ‖·‖L2

∑
U∈Ǧ

δ(U)−
1
2
(
f1

U
� f2

)
. (5.35)

Proof. As is well known, since G is compact, the convolution of any pair of functions in
L2(G) is again a function belonging to L2(G). Moreover, from relation (3.9), it follows that
‖·‖L2

∑
U∈Ǧ PRU

f = f , ∀ f ∈ L2(G); hence—denoting by R the left regular representation of
G and by J the complex conjugation

L2(G) � f 	→ f ((·)−1)∗ ∈ L2(G), (5.36)
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for any f1, f2 ∈ L2(G) we have∫
dμG(h) f1(h) f2(h

−1g) =
∫

dμG(h)

⎛
⎝‖·‖L2

∑
U∈Ǧ

PRU
f1

⎞
⎠ (h)f2(h

−1g)

= 〈
R(g)Jf2, ‖·‖L2

∑
U∈Ǧ

PRU
f1

〉
L2

=
∑
U∈Ǧ

〈
R(g)Jf2, PRU

f1
〉
L2

=
∑
U∈Ǧ

∫
dμG(h)

(
PRU

f1
)
(h)f2(h

−1g), (5.37)

for all g ∈ G. On the other hand, by corollary 5.1 we have that∫
dμG(h)

(
PRU

f1
)
(h)f2(h

−1(·)) = δ(U)−
1
2
(
f1

U
� f2

)
, ∀U ∈ Ǧ, (5.38)

where we recall that δ(U)−
1
2 = dU . Moreover, by relations (4.14) and (4.11), for any

f1, f2 ∈ L2(G) we obtain the following estimate:∑
U∈Ǧ

δ(U)−1
∥∥f1

U
� f2

∥∥2
L2 =

∑
U∈Ǧ

δ(U)−1
∥∥(

PRU
f1

) U
�

(
PRU

f2
)∥∥2

L2

�
∑
U∈Ǧ

δ(U)−1
∥∥PRU

f1

∥∥2
L2

∥∥PRU
f2

∥∥2
L2

�
∑
U∈Ǧ

∥∥PRU
f1

∥∥2
L2

∥∥PRU
f2

∥∥2
L2 � ‖f1‖2

L2‖f2‖2
L2 . (5.39)

Hence, taking into account (4.13), we see that ‖·‖L2

∑
U∈Ǧ δ(U)−

1
2
(
f1

U
� f2

)
is a well-defined

element of L2(G) and, by (5.38),

‖·‖L2

∑
U∈Ǧ

∫
dμG(h)

(
PRU

f1
)
(h)f2(h

−1(·)) = ‖·‖L2

∑
U∈Ǧ

δ(U)−
1
2
(
f1

U
� f2

)
. (5.40)

At this point, relations (5.37) and (5.40) imply that formula (5.35) holds true. �

We will now prove that it is possible to achieve a simple expression of the K̂-deformed
star product associated with the representation U, for every bounded operator K̂ ∈ B(H).
Although this result is more general than theorem 5.1—which corresponds to the case where
K̂ = I—we will derive it as a consequence of formula (5.26) for the star product. To this aim,
it is useful to observe that, by the definition of the K̂-deformed star product and the fact that
S∗

USU = I , we have

f1
U
�
K̂

f2 := SU

(
S∗

Uf1 K̂ S∗
Uf2

)
= SU

(
S∗

Uf1 S∗
U

(
SU

(
K̂ S∗

Uf2
))) = f1

U
�

(
SU

(
K̂ S∗

Uf2
))

. (5.41)

Moreover, for every bounded operator K̂ in H and for every vector χ contained in Dom
(
D̂−2

U

)
,

let us define an integral kernel κU(K̂, χ; ·, ·, ·) : G × G × G → C by setting

κU(K̂, χ; g, h, h′) := 〈
D̂−1

U U(h)∗U(g) D̂−1
U χ, K̂ U(h′) D̂−1

U χ
〉

= m(h, h−1g)∗�G(h−1g)
1
2 U(K̂, χ;h−1g, h′). (5.42)

Comparing this definition with (5.6), it is clear that κU(χ; g, h, h′) ≡ κU(I, χ; g, h, h′).
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Corollary 5.3. Let K̂ be a bounded operator in H and {χn}n∈N an orthonormal basis
contained in the dense linear span Dom

(
D̂−2

U

)
. Then, for any f1, f2 ∈ L2(G), the following

formula holds:

f1
U
�
K̂

f2 = ‖·‖L2

∑
n

∫
dμG(h)

∫
dμG(h′)κU (K̂, χn; ·, h, h′)f1(h)f2(h

′). (5.43)

Proof. Taking into account relation (5.41), we can apply formula (5.26) for the (standard)
star product, and next we use relation (5.15), thus getting

f1
U
�
K̂

f2 = ‖·‖L2

∑
n

∫
dμG(h)

∫
dμG(h′)κU (χn; ·, h, h′)f1(h)

(
SU

(
K̂S∗

Uf2
))

(h′)

= ‖·‖L2

∑
n

〈
Rm(·)JmSURχ̆n

S∗
U

(
SU

(
K̂S∗

Uf2
))

, f1
〉
L2

= ‖·‖L2

∑
n

〈
Rm(·)Jm

(
SURχ̆n

(
K̂S∗

Uf2
))

, f1
〉
L2 . (5.44)

From (5.44), by virtue of relations (5.14), (5.9) and (5.42), it follows that

f1
U
�
K̂

f2 = ‖·‖L2

∑
n

∫
dμG(h)f1(h)m(h, h−1g)∗�G(h−1(·)) 1

2
(
SURχ̆n

LK̂S∗
Uf2

)
(h−1(·))

= ‖·‖L2

∑
n

∫
dμG(h)

∫
dμG(h′)κU (K̂, χn; ·, h, h′)f1(h)f2(h

′). (5.45)

The proof is complete. �

Formula (5.43) assumes a remarkably simple form in the special case where the carrier
Hilbert space H of the representation U is finite-dimensional (so that the l.c.s.c. group G must
be unimodular; see the last assertion of remark 2.1). Indeed, one easily derives the following
result.

Corollary 5.4. Suppose that the Hilbert space H, where the square integrable representation
U acts, is finite-dimensional. Then, for any pair of functions f1, f2 ∈ L2(G), the following
formula holds:

f1
U
�
K̂

f2 = d−3
U

∫
dμG(h)

∫
dμG(h′) tr(U(·)∗U(h) K̂ U(h′)) f1(h)f2(h

′). (5.46)

Remark 5.4. Assume that G is a compact—in particular, a finite—group and U is a
(irreducible) unitary representation. In this case, formula (5.46) reads:

f1
U
� f2 = δ(U)

3
2

∫
dμG(h)

∫
dμG(h′) CU((·)−1hh′) f1(h)f2(h

′), (5.47)

where CU : G → C is the character of the finite-dimensional representation U, i.e. CU(g) :=
tr(U(g)). Then, since SUI = δ(U)

1
2 CU((·)−1), the obvious equation (SUI)

U
� (SUI) =

SUI translates into the following relation for the character CU :

CU(g) = δ(U)2
∫

dμG(h)

∫
dμG(h′) CU(ghh′) CU(h−1) CU((h′)−1). (5.48)

Thus, we recover results previously found in [22].
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6. Applications

In this section, we will consider two simple—but extremely significant—applications of the
theory developed in sections 3–5. We will first consider the case of a square integrable—
genuinely projective—representation of a unimodular group, i.e. the group of translations on
phase space. The analysis of this case leads to the Groenewold–Moyal star product, i.e. the
prototype of the star product. Next, we will study a case where square integrable unitary
representations of a group which is not unimodular—the one-dimensional affine group—are
involved. As already mentioned, this group is at the base of wavelet analysis.

6.1. The group of translations on phase space

Let us consider the group of translations on the (1 + 1)-dimensional phase space, namely, the
additive group R × R (the extension to the (n + n)-dimensional case is straightforward). As
is well known (see, e.g., [39]), the map R × R � (q, p) 	→ U(q, p) ∈ U(L2(R)), defined by

U(q, p) := exp(i(pq̂ − qp̂)) = e− i
2 qp exp(ipq̂) exp(−iqp̂) = e

i
2 qp exp(−iqp̂) exp(ipq̂),

(6.1)

q, p ∈ R—where q̂, p̂ are the standard position and momentum operators—is a projective
representation of the unimodular group R×R, representation which we will call (with a slight
abuse of terminology) Weyl system. The Weyl system—as already observed in section 2—is a
square integrable representation. It ‘encodes’ the canonical commutation relations of quantum
mechanics (in the integrated form), as shown by the last two members of (6.1).

The (generalized) Wigner transform generated by the Weyl system is not the standard
Wigner transform but the so-called Fourier–Wigner transform [40]. In fact, it turns out
that these maps are related by the symplectic Fourier transform, i.e. by the unitary operator
Fsp : L2(R × R) → L2(R × R) determined by

(Fspf )(q, p) = 1

2π

∫
R×R

f (q ′, p′) ei(qp′−pq ′) dq ′ dp′, ∀ f ∈ L1(R × R) ∩ L2(R × R).

(6.2)

Recall that Fsp enjoys the remarkable property of being both unitary and self-adjoint:
Fsp = F∗

sp, F2
sp = I .

As already mentioned in section 2, (2π)−1dqdp is the Haar measure on R×R normalized
in agreement with the Weyl system U. Then, in this case, the generalized Wigner transform SU

is the isometry from B2(L2(R)) into L2(R × R) ≡ L2(R × R, (2π)−1dq dp; C) determined
by

(SU ρ̂)(q, p) = tr(U(q, p)∗ρ̂), ∀ ρ̂ ∈ B1(L
2(R)). (6.3)

The multiplier m : (R × R) × (R × R) → T associated with U is of the form

m(q, p; q ′, p′) = exp
( i

2
(qp′ − pq ′)

)
. (6.4)

Therefore, according to formulas (3.11) and (3.13), the generalized Wigner transform
SU intertwines the unitary representation U ∨ U : R × R → U(B2(L2(R))) with the
representation Tm : R × R → U(L2(R × R)) defined by

(Tm(q, p)f )(q ′, p′) = e−i(qp′−pq ′)f (q ′, p′), ∀ f ∈ L2(R × R). (6.5)

Moreover, SU intertwines the involution J in B2(H) with the complex conjugation J ≡ Jm
that, in this case—as the reader may readily check—takes the following form:

(Jf )(q, p) = f (−q,−p)∗, ∀ f ∈ L2(R × R). (6.6)
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As anticipated, the standard Wigner transform—we will denote it by T—is the isometry
obtained composing the isometry SU , determined by (6.3), with the symplectic Fourier
transform (see [23]):

T := Fsp SU : B2(L
2(R)) → L2(R × R). (6.7)

It is clear that the isometry T intertwines the representation U ∨ U with the unitary
representation V : R × R → U(L2(R × R)) defined by V(q, p) := FspTm(q, p)Fsp,
∀ (q, p) ∈ R × R; as the reader may easily check, explicitly, we have

(V(q, p)f )(q ′, p′) = f (q ′ − q, p′ − p), ∀ f ∈ L2(R × R). (6.8)

Thus, the representation V acts by simply translating functions on phase space. It is also
a remarkable fact—see [41]—that Ran(T) = L2(R × R); equivalently, RU ≡ Ran(SU) =
L2(R × R) (this fact can be verified deducing the integral kernel of the Hilbert–Schmidt
operator S∗

Uf , for a generic f ∈ L2(R × R), and observing that Ker(S∗
U) = {0}). Therefore,

the standard Wigner transform T and its adjoint T∗, the standard Weyl map, are both unitary
operators.

Let us now study the star product in L2(R × R) induced by the Weyl system U. Recalling
theorem 5.1, and taking into account the fact that, in this case, RU = L2(R×R) (and dU = 1),
we have(
f1

U
� f2

)
(q, p) = 1

2π

∫
R×R

f1(q
′, p′)m(q, p; q − q ′, p − p′)∗ f2(q − q ′, p − p′) dq ′ dp′

= 1

2π

∫
R×R

f1(q
′, p′) f2(q − q ′, p − p′) exp

( i

2
(qp′ − pq ′)

)
dq ′ dp′,

(6.9)

∀ f1, f2 ∈ L2(R×R). Thus, the star product associated with the Weyl system is nothing but the
twisted convolution of functions [4] (see also [40, 42]). According to the results of section 4,

(L2(R × R),
U
�, J) is a proper H∗-algebra and SU : B2(H) → L2(R × R) is an isomorphism

of H∗-algebras.
The unitary operators T, T∗ induce another star product of functions

(·) � (·) : L2(R × R) × L2(R × R) � (f1, f2) 	→ T((T∗f1)(T
∗f2)) ∈ L2(R × R), (6.10)

namely the twisted product (see [4]). Using the fact that T = Fsp SU and T∗ = S∗
U Fsp, we

obtain that

f1 � f2 = Fsp((Fspf1)
U
� (Fspf2)). (6.11)

From this relation, by an explicit calculation, one finds that, for any f1, f2 ∈ L1(R × R) ∩
L2(R × R),

(f1 � f2)(q, p)

= 1

π2

∫
R×R

dq ′ dp′
∫

R×R
dq ′′ dp′′ θ(q, p; q ′, p′; q ′′, p′′)f1(q

′, p′)f2(q
′′, p′′), (6.12)

where we have set

θ(q, p; q ′, p′; q ′′, p′′) := exp(i2(qp′ − pq ′ + q ′p′′ − p′q ′′ + q ′′p − p′′q)). (6.13)

The function θ : (R × R) × (R × R) × (R × R) → T is the celebrated Groenewold–Moyal
kernel. The symplectic Fourier transform intertwines the complex conjugation J with the
standard complex conjugation in L2(R × R): FspJFspf = f ∗. Therefore, L2(R × R)

endowed with the twisted product and with the standard complex conjugation is again a proper
H∗-algebra. This fact seems to have been noted for the first time by Pool [41].
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6.2. The one-dimensional affine group

Let us consider, now, the one-dimensional affine group, namely, the semi-direct product
group G = R � R+

∗ , where R+
∗ is the subgroup of dilations, i.e. R+

∗ is the group of strictly
positive real numbers (we will denote by R−

∗ the set of strictly negative real numbers)
which acts multiplicatively on R. Thus, G consists of the topological space R × R+

∗ ,
endowed with the composition law (a, r) (a′, r ′) = (a + ra′, rr ′), a ∈ R, r ∈ R+

∗ . This
group is not unimodular. A pair μL, μR of—left and right, respectively—conjugated Haar
measures on G (

∫
G

f (g) dμL(g) = ∫
G

f (g−1) dμR(g)) are given by dμL(a, r) = r−2 da dr ,
dμR(a, r) = r−1 da dr , a ∈ R, r ∈ R+

∗ . Hence, the modular function �G on G is given by
�G(a, r) = r−1, ∀ a ∈ R, ∀ r ∈ R+

∗ . As already recalled in section 2, this group is at the
base of the theory of the wavelet transform. For the sake of completeness, we will come back
to this point later on. It is also worth mentioning that the quantization–dequantization theory
based on the affine group has been studied by Aslaksen and Klauder [43], who obtained the
Wigner and Weyl maps associated with the representations of this group. However, they did
not consider the concept of star product.

Using Mackey’s little group method for classifying the irreducible representations of
semi-direct product groups with an Abelian normal factor (see [26]), and the results of
[44] on the characterization of square integrable representations of the groups of this
type, one finds out that the affine group G admits a maximal set of mutually unitarily
inequivalent, square integrable, irreducible unitary representations consisting of two elements:
{U(−) : G → U(L2(R−

∗ )), U(+) : G → U(L2(R+
∗))}. These two unitary representations are

defined by

(U(−)(a, r)ϕ(−))(x) := r
1
2 eiaxϕ(−)(rx),

a ∈ R, r ∈ R+
∗, x ∈ R−

∗ , ϕ(−) ∈ L2(R−
∗ ),

(6.14)

(U(+)(a, r)ϕ(+))(x) := r
1
2 eiaxϕ(+)(rx),

a ∈ R, r ∈ R+
∗, x ∈ R+

∗, ϕ(+) ∈ L2(R+
∗),

(6.15)

where the Hilbert space L2(R±
∗ ) is of course defined considering the restriction to R±

∗ of the
Lebesgue measure on R. Moreover, by the results of [44], the Duflo–Moore operator D̂(±)

associated with the representation U(±)—and normalized according to μL—is the unbounded
multiplication operator (defined on its natural domain) by the function R±

∗ � x 	→ √
2π/|x|.

The representations U(−), U(+) are unitarily inequivalent, but they are intertwined by
the antiunitary operator L2(R−

∗ ) � ϕ 	→ ϕ(−(·))∗ ∈ L2(R+
∗). We will denote by S(−) and

S(+), respectively, the associated Wigner maps. These maps are isometries that intertwine the
unitary representations U(−) ∨ U(−) and U(+) ∨ U(+), respectively, with the two-sided regular
representation T of R � R+

∗ , representation which is defined by

(T (a, r)f )(a′, r ′) := r− 1
2 f (r−1(a′ − a + r ′a), r ′), ∀ f ∈ L2(R × R+

∗, μL). (6.16)

The standard involutions J(−), J(+) in the Hilbert–Schmidt spaces B2(L2(R−
∗ )), B2(L2(R+

∗))
are intertwined by the Wigner maps S(−) and S(+), respectively, with the map

J : L2(R × R+
∗, μL) → L2(R × R+

∗, μL), (6.17)

which is the complex conjugation defined by

(Jf )(a, r) = r
1
2 f (−r−1a, r−1)∗, ∀ f ∈ L2(R × R+

∗, μL). (6.18)
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The explicit form of the Weyl map S∗
(±) : L2(G) → B2(L2(R±

∗ )) can be easily obtained
applying formula (3.22). Indeed, for every function f : G → C in L1(G) ∩ L2(G) and every
vector ϕ(±) in Dom

(
D̂−1

(±)

)
, we have((

S∗
(±)f

)
ϕ(±)

)
(x) =

∫
G

f(a, r)
(
U(±)(a, r)D̂−1

(±)ϕ
(±)

)
(x)dμL(a, r)

=
∫

G

f(a, r)
√

r eiax

√
r|x|
2π

ϕ(±)(rx) dμL(a, r), for a.a. x ∈ R±
∗ .

(6.19)

Next, by virtue of Fubini’s theorem and of a change of variables (r 	→ x−1y, with x, y ∈ R±
∗ ),

we get((
S∗

(±)f
)
ϕ(±)

)
(x) =

∫
R±∗

dy

√|x|ϕ(±)(y)

|y|
∫

R

da√
2π

f(a, x−1y) eiax

=
∫

R±∗
ς

(±)
f (x, y)ϕ(±)(y) dy, (6.20)

for a.a. x ∈ R±
∗ , where—for every f ∈ L2(G)—the integral kernel ς

(±)
f (·, ·) : R±

∗ ×R±
∗ → C

is defined by

ς
(±)
f (x, y) := |x| 1

2 |y|−1(F1f )(−x, x−1y), x, y ∈ R±
∗ , (6.21)

with F1 denoting the Fourier transform with respect to the first variable. This result—by
the well-known essential uniqueness of the inducing kernel of a Hilbert–Schmidt operator—
implies that ς

(±)
f (·, ·) is the integral kernel associated with the Hilbert–Schmidt operator S∗

(±)f

in L2(R±
∗ ), for every f ∈ L1(G) ∩ L2(G); hence, we have that

‖S∗
(±)f‖2

B2
=

∫
R±∗

dx

∫
R±∗

dy
|x|
y2

|(F1f)(−x, x−1y)|2

=
∫

R±∗
dx

∫
R+∗

dr

r2
|(F1f)(−x, r)|2

�
∫

R
dx

∫
R+∗

dr

r2
|(F1f)(−x, r)|2 = ‖f‖2

L2 . (6.22)

Of course, what we have found—i.e. ‖S∗
(±)f‖2

B2
� ‖f‖2

L2 —is coherent with the fact that
the Weyl map S∗

(±) is a partial isometry. Now, let f be a generic function in L2(G) and
{fn}n∈N a sequence in L1(G) ∩ L2(G) such that limn→∞ ‖f − fn‖L2 = 0. Then, the sequence
{S∗

(±)fn}n∈N ⊂ B2(H) converges to S∗
(±)f ; equivalently, the sequence

{
ς

(±)
fn

}
n∈N

converges in
L2(R±

∗ × R±
∗ ) to the integral kernel of the Hilbert–Schmidt operator S∗

(±)f , kernel which for

the moment is still ‘unknown’. But, arguing as in (6.22), we see that the function ς
(±)
f belongs

to L2(R±
∗ × R±

∗ ) and∥∥ς
(±)
f − ς

(±)
fn

∥∥2
L2(R±∗ ×R±∗ )

=
∫

R±∗
dx

∫
R±∗

dy
|x|
y2

|(F1(f − fn))(−x, x−1y)|2 � ‖f − fn‖2
L2 .

(6.23)

It follows that the integral kernel of S∗
(±)f is ς

(±)
f for every f ∈ L2(G). Moreover, we have

that

‖S∗
(−)f ‖2

B2
+ ‖S∗

(+)f ‖2
B2

=
∫

R−∗
dx

∫
R+∗

dr

r2
|(F1f )(−x, r)|2 +

∫
R+∗

dx

∫
R+∗

dr

r2
|(F1f )(−x, r)|2

=
∫

G

|f (a, r)|2 r−2da dr = ‖f ‖2
L2 , ∀ f ∈ L2(G). (6.24)
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Therefore, denoting by R(±) the range of the Wigner map S(±) (we know that R(−) ⊥ R(+),

see remark 3.1)—since R(±) = Ker
(
S∗

(±)

)⊥
—the following relation must hold: L2(G) =

R(−) ⊕ R(+).
Let us now consider the star products in L2(G) associated with the square integrable

representations U(−) and U(+). By definition—see (4.1)—we have

f1
(±)
� f2 := S(±)

((
S∗

(±)f1
)(

S∗
(±)f2

))
, ∀ f1, f2 ∈ L2(R × R+

∗, μL). (6.25)

Exploiting the results of section 5, we can provide explicit formulas for these star products.
Let {χ(±)

n }n∈N be an orthonormal basis in L2(R±
∗ ) contained in Dom(D̂−2

(±)), i.e., such that
(R±

∗ � x 	→ |x| χ(±)
n (x)) ∈ L2(R±

∗ ). For instance, one can choose the Laguerre functions
χ(±)

n : R±
∗ � x 	→ Ln−1(|x|) e−|x|/2, where Lk, k = 0, 1, 2, . . . , is the Laguerre polynomial of

order k. According to the main result of section 5—see theorem 5.1—we have

f1
(±)
� f2 = ‖·‖L2

∑
n∈N

∫
G

dμL(a, r)

∫
G

dμL(a
′, r ′)κ(±)(χ

(±)
n ; ·, ·; a, r; a′, r ′)

× f1(a, r)f2(a
′, r ′), (6.26)

where the integral kernel κ(±)(χ
(±)
n ; ·, ·; ·, ·; ·, ·) : G × G × G → C is defined by

κ(±)

(
χ(±)

n ; a1, r1; a2, r2; a3, r3
)

:= 〈
U(±)(a1, r1)D̂

−1
(±)χ

(±)
n , U(±)(a2, r2)D̂

−1
(±)U

(±)(a3, r3)D̂
−1
(±)χ

(±)
n

〉
. (6.27)

Recalling the explicit form of the the Duflo–Moore operators D̂(±), we have:

κ(±)

(
χ(±)

n ; a1, r1; a2, r2; a3, r3
)

= r2
√

r3

r1

〈
D̂−1

(±)χ
(±)
n , D̂−2

(±)U
(±)(−(a1 − a2 − r2a3)/r1, r2r3/r1)χ

(±)
n

〉
=

(
r2

r1

) 3
2 r3

2π
�(±)

n ((a1 − a2 − r2a3)/r1, r2r3/r1), (6.28)

where the function �(±)
n : R × R+

∗ → C is defined by

�(±)
n (α, �) := F

(|·| 3
2 χ̆ (±)

n (·)∗χ̆ (±)
n (�(·)))(α), α ∈ R, � ∈ R+

∗, (6.29)

with F : L2(R) → L2(R) denoting the Fourier transform and χ̆ (±)
n ∈ L2(R) the function

χ̆ (±)
n (x) = χ(±)

n (x), for x ∈ R±
∗ , χ̆ (±)

n (x) = 0, otherwise, (6.30)

i.e. χ̆ (±)
n is the image of χ(±)

n via the natural immersion of L2(R±
∗ ) into L2(R). In conclusion,

the triples

A(−) ≡ (
L2

(
R × R+

∗, μL

)
, (·) (−)

� (·), J
)

and A(+) ≡ (
L2

(
R × R+

∗, μL

)
, (·) (+)

� (·), J
)

(6.31)

are H∗-algebras. The mutually orthogonal subspaces R(−) and R(+) of L2(R × R+
∗, μL) are,

respectively, the canonical and the annihilator ideals in the standard decomposition of the
H∗-algebra A(−), while they are, respectively, the annihilator and the canonical ideals for A(+).
It is clear that one may endow L2(R × R+

∗, μL) with the structure of a proper H∗-algebra by
considering the star product

f1 � f2 := (
f1

(−)
� f2

)
+

(
f1

(+)
� f2

)
. (6.32)

Let us now clarify the link with the standard wavelet transform. To this aim, let us consider
the unitary representation Ũ : G → U(L2(R)) defined as follows. Taking into account the
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orthogonal sum decomposition L2(R) = L2(R−
∗ )⊕L2(R+

∗), we can consider the representation
U(−) ⊕ U(+) of G in L2(R); then, we set

Ũ (a, r) := F((U(−) ⊕ U(+))(a, r))F∗, ∀ (a, r) ∈ R � R+
∗. (6.33)

For every ψ ∈ L2(R), we have

ψa,r (a
′) ≡ (Ũ(a, r) ψ)(a′) = r− 1

2 ψ((a′ − a)/r), a, a′ ∈ R, r ∈ R+
∗. (6.34)

Observe that this is the typical dependence on the translation and dilation parameters of a
‘wavelet frame’ (see [31]; note that the symbols that we use here for these parameters are
non-standard). However, a function ψ ∈ L2(R), in order to be a ‘good mother wavelet’—i.e.
in order to verify the the orthogonality relations∫

G

〈φ,ψa,r〉〈ψa,r , φ〉 dμL(a, r) = 〈φ, φ〉, ∀φ ∈ L2(R) (6.35)

—has to satisfy suitable conditions. Indeed, as the reader will easily understand, one has to
require that the following conditions hold:

(i) the projection onto L2(R±
∗ ) (regarded as a subspace of L2(R)) of the Fourier transform of

ψ belongs to Dom(D̂(±)), i.e.(
R±

∗ � x 	→ |x|−1 |(F ψ)(x)|2) ∈ L1(R±
∗ ); (6.36)

(ii) denoted by εR±∗ the characteristic function of the subset R±
∗ of R—observe that the

orthogonal projection of L2(R) onto L2(R±
∗ ) is just the multiplication operator by εR±∗ —

the vectors

D̂(−)

(
εR−∗ (Fψ)

) ∈ L2
(
R−

∗
)

and D̂(+)

(
εR+∗ (Fψ)

) ∈ L2
(
R+

∗
)

(6.37)

are both normalized, i.e.

2π

∫
R−∗

|x|−1|(Fψ)(x)|2 dx = 2π

∫
R+∗

|x|−1|(Fψ)(x)|2 dx = 1. (6.38)

7. Conclusions, final remarks and perspectives

In this paper, we have considered star products from a purely group-theoretical point of view. In
particular, we have not assumed to deal with Lie groups, but, in general, with locally compact
topological groups. Therefore, our treatment allows us to include in a unified framework,
for instance, all the finite groups (in the paper regarded as compact groups). This feature
is certainly appealing in view of the increasing interest in realizing quantum mechanics on
discrete spaces (see [45] and references therein). We think, in particular, that applying our
results to a formulation of quantum mechanics on finite groups would be extremely interesting.

Let us briefly review the main points of our work. We have first recalled—see section 3
—that with a square integrable (in general, projective) representation U : G → U(H) of a
locally compact group G are naturally associated a dequantization (Wigner) map SU , which is
an isometry, and its adjoint, the quantization (Weyl) map S∗

U . The standard Wigner and Weyl
maps are recovered in the case where the group under consideration is the group of translations
on phase space, up to a (symplectic) Fourier transform. We stress that this Fourier transform
does not play any—mathematically or conceptually—relevant role; essentially, it allows us to
obtain the usual quantization rule for the functions of position and momentum.

Next, in section 4, we have observed that by means of the quantization and dequantization
maps associated with the representation U one can define a star product of functions enjoying
remarkable properties. Endowed with this product and with a suitable involution, the Hilbert
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space L2(G) becomes a H∗-algebraAU , and—regarding G as a ‘symmetry group’ of a quantum
system—the star product is, by construction, equivariant with respect to the natural action of G
in AU , i.e. the action with which the standard symmetry action of G on states or observables in
the Hilbert spaceH is intertwined via the Wigner map. Observe that the star product associated
with U is such that the canonical ideal of AU —ideal which coincides with the range RU of
SU —is a simple H∗-algebra (see [37, 38]), isomorphic toB2(H). It is clear that the algebra AU

is commutative if and only if dim(H) = 1 (in this case, the square-integrability of U forces the
group G to be compact). Observe moreover that, in the case where G admits various unitarily
inequivalent unitary representations, one can define more general star products by forming
suitable ‘orthogonal sums’ of ‘simple’ star products; see, e.g., formula (6.32). In section 4, we
have also considered an interesting deformation of the star product associated with U, namely
the K̂-deformed star product, and studied its main properties. We will consider applications
of this deformed product elsewhere.

At this point, our main task has been to derive explicit formulas for the previously defined
star products. This task has been accomplished in section 5. We have shown that for every
orthonormal basis contained in the domain of the positive self-adjoint operator D̂−2

U (with
D̂U denoting the Duflo–Moore operator associated with U) one has a realization of the star
product, see theorem 5.1. In the case where the group G is unimodular, the star product of
two functions belonging to the range of the Wigner map SU assumes the particularly simple
form of a ‘twisted convolution’, which reduces to the standard convolution if U is a unitary
representation. It is interesting to note, incidentally, that it is the Banach space L1(G) which
is usually endowed with the structure of a Banach ∗-algebra by means of convolution [27],
while in L2(G) the convolution product is, in general, an ‘ill-posed’ operation. Namely, if the
convolution product exists and belongs to L2(G) for all pairs of functions in L2(G), then the
group G must be compact (recall, however, that by Hölder’s inequality, the convolution of any
pair of functions in L2(G) does exist, for G unimodular). This is a particular case (p = 2)
of the classical ‘Lp-conjecture’ (p > 1), which has been finally proved (in its general form)
in 1990 by Saeki [46]. Therefore, the whole vector space L2(G) can be endowed with the
structure of an algebra by means of the convolution product if and only if G is compact.

Consider, now, the specific case where the group G is compact. In this case, one obtains
a nice decomposition formula for the convolution in L2(G) in terms of the star products
associated with a realization of the unitary dual Ǧ of G; see corollary 5.2. The Hilbert space
L2(G), endowed with the convolution product and with the involution (5.36), is a H∗-algebra
which we denote by L(G). The orthogonal sum decomposition (3.9)—complemented by
formula (5.35)—can be regarded as the decomposition into minimal closed (two-sided) ideals
of L(G) prescribed by the ‘second Wedderburn structure theorem for H∗-algebras’ [37, 38].
Any of these ideals—say RU = L2(G)[U ]—is a simple finite-dimensional H∗-algebra which
is embedded, in a natural way, in the H∗-algebra AU determined by the star product (5.47)
and by the involution (5.36); precisely, as already observed, RU is the canonical ideal of AU .
It is actually the interest in the algebra L(G) that motivated Ambrose’s study of H∗-algebras
[37]. In our opinion, the formalism of star products provides a concrete and conceptually clear
framework for Ambrose’s ideas. Incidentally, note that the definition of a H∗-algebra given
in section 4 may seem to be slightly stricter than the original definition given by Ambrose.
However, it is easy to show that they are actually equivalent.

It is worth observing that—different from the quantization–dequantization scheme which
has been recently developed in [23]—in the ‘Weyl–Wigner approach’ that is considered in the
present contribution there is no canonical way for representing a generic quantum observable
as a suitable ‘phase space function’ since, for H infinite-dimensional, B2(H) � B(H) (in the
case of the standard Weyl quantization, this problem has been studied, for instance, in [47]).
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This feature, of course, reflects in the fact that there is no standard way for representing within
the framework considered here the product of a generic quantum observable by a state as a
star product of functions. However, we believe that suitably extending the domain of the first
argument of the star product—this time defined as the rhs of (5.26)—from L2(G) to some
larger space of functions (or distributions), and, possibly, restricting the domain of the second
argument, one should be able to generalize the results obtained in the paper. This interesting
topic will be the object of further investigation.

One can, in principle, elaborate several examples of star products defined along the lines
traced in the present paper that are potentially relevant for applications. In addition to the
case of compact groups, for all groups admitting square integrable projective representations,
it is possible to define star products of functions. In section 6, we have considered the
significant examples of the group of translations on phase space and of the affine group, but, of
course, several other examples would deserve attention. As an example, we mention the group
SL(2, R). According to classical results due to Bargmann [48], this group admits a (infinite)
countable set of mutually unitarily inequivalent, square integrable unitary representations—
the ‘discrete series’—with carrier Hilbert spaces consisting of suitable holomorphic functions
on the upper half plane.

A wide class of groups with important applications in physics and related research areas
(in particular, signal analysis) is formed by the semi-direct products with an Abelian normal
factor. For these groups square integrable representations can be suitably characterized, see
[44], and examples of such groups, admitting square integrable representations and having
remarkable applications, can be found in [24, 25]. From the point of view of signal analysis,
the image through the Weyl map of a function in L2(G) can be regarded as a localization
operator of a different kind with respect to the localization operators usually considered in
wavelet and Gabor analysis [31]. Thus, the star product provides a way for characterizing the
product of two localization operators. Possible applications of our results to signal analysis is
a further topic that we plan to investigate in the future.
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